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PREFACE

This is a final report submitted under Contract

DA-44-009-ENG-4158. This report supersedes ail

quarterly reports submitted under this contract.
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SUMMARY

A probability theory is developed to describe the

initiation of detonation.

A new solid state reaction rate theory is presented.

Some preliminary applications are made to drop-height

experiments.

Calculations are made to determine the theoretical

dielectric constant and loss tangent of a dielectric

medium containing impurities.

Conclusions and recormnendations are presented at

the end of each chaptor.
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Chapter 1 01&zO?~

%0t 4 L
MODEL FOR INITIATION

Do S. Ling, Jr. OP

Introduction Oo4

In a previous report 1 we considered a simplified model

of the initiation process. For brevity we will term this

the "sing3e-point" modelo In this report we continue the

development of this model.

Section I reviews briefly the basic ideas of the model.

In Section II the method of moments is applied to the fund-

amental differential equation of the model. Section III

shows how the saddle point method (method of steepest

descent) may be used to solve the moment equations. Section

IV presents an improved solution of the differential

equation. This Improved solution is still based on the

method of moments but permits one to neglect higher moments

with much less error. The method of Section IV gives a

completely adequate solution of the differential equation

and thus constitutes a complete mathematical treatment of

the model. Section V shows how the model may be made more

realistic while still remaining a single-point model. The

methods of Section V have been used in the actual numerical

1. First quarterly Technical Report, Contract DA-44-oog-
ENG-4158, 9 October 1959 to 5 February 1960, prepared
by P?.EoCo Corporation.



calculations. Section VI discusses the important question

of the actual probability of initiation of explosion as

predicted by the "single-point" model. Section VII

presents the results of some numerical calculations.

Section VIII presents some concluding remarks and makes

recommendations for future investigation.

C I S S z 4 ,
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Setont• . ". The %I.tgi.Jo:int" ,oel of" Initiation. 4  O

The bas.9c idea of th,) ". iigle'point" model is to Z041

a.iswure that corditlons aro uniform over the very small

region of the explosi .v• in whirh initiation occurs.

Be.cause reaotIons are ocu•rrirrin the small region is at

a higher temperature, T., then the temperature T of the

sv-xroundIngs,. lowe-ver, as wao discu.,isod in gre-to,,

detail in th e ar.erx report, :,abher than assign a

defin•ite iempoerature T to tho inall heated region, we

In'Lb•oduae a probability- f'un,=ct:[Ici. TOl t) for bhe regiono

fb-uýi .P(T,i;)dT is the probabilIty thAi; at t;ime t the temp-

;ratux~o of the region I ]eI. b.: iween T and T+dT. Very

br•u.fly ;t•.{atod, the v'e.soe Voo, this npproach Is that when

very small ur.mbei's of molocul.a.,e are InVolved we cannot

propeily speak of the nunber of .reactions which occur in

a time lnto:Lva. but can• only ritate the probability that a

reaction ocours :Jn said tine initerval. Thus at any time

we can noeer roa].ly say how many reactions have occurred

and therefore we cannot know how much the temperature of

the region has been raised,, Rather,1 we can only state

the probability of a certain number of reactions and there-

JLore the probability that the. temperature has a certain

value.

The small region (the "singlo.-point" since conditions

are ass~u~med t o be uniform over the region) will lose heat

to the surroundings by thermal conduction at a rate given

3



by~t Ko b'1., o. r el~ &;K t~ c-'j brf d tli t r,

a ;i~ o.: no o ~ ~ 1; rJo v.'e nravýov rarort) with 0

oo-th N IUT-1ivibC-f c'f' molnoul s inl the MUM&1 rogion

V:tho ..i.;iRI. tor&I Viiv~j~ of thf, Yriediurn

N~ a)2d YY-i T! w: tc')1)': be roý-ted by Introducing tbe.

~ ½ri v cc.*~ db sln't m rcJloculie In Section V vre

wi2.i.IiKL~~U;' '~ crcni;e~v~o s f." or' K•. Th1,- u~.li not,

:i.yi!v J- f~v Of~ 0 ,1' R i Che cioV0]LQP1QerA 1hi!Gk CTfl10Ui~

Iin J?' '1m 1 , ITT and TY

Ronoi"".on avi to mteuvr In the small rogllon

v~vd itbnpoa .'it pov mn~i; timio pgvei'i by

P (T) VA"Ek

D, A.n idie owt-lval-tý.on onorrgy rxnd A J~ tho frequency factor

r)!' i;hn Avrlon:Lus imuntiori, N In the riumifber~ of m'olecules

1-11 th¾ttro).n k Is~ 13ol1-,amrn~nii' constant. It will be

convi.'orier4 to nw'etampoiatturo in energy units, thus

In alli tbai; foilmatý T st'andq for k times 'tho to-mperature~. If

we chonse BE j 1ts S 27 a.9 an e~nergy unit and let U =NA thon

we ha3ve tho oaIriplor expr(:).sion

p(T)= j1/



If each i:oactlor|•i ,e.eases an amrount of energy Q

we -ill asstume Vhis to be immediately distributed

uniformly over the entire region of the "singile-pointt",.

This is clearly a rather unrealistic assumption but it

is necessary in order to preserve the "single-potnt"

nature of the model. This energy, Q, will cause 'T to

increase by an anount "q". "IfQ" . clearly related to

Q, N and C, the specific heat of the mediuirn, The exact

expression is given ir Section V.

We -iust now derive the equation satisifled by

P(Tt). That is, we must show how to get P(T,t1dt)

if we know P(Tt). The following derIvation is exactl",

that pre•ientod in the earlier report but is developed

here in &reate? detail. What is the probability that at

time t+dt the temperature lies between T and T+AT? This

probabil]. y can clearly arise in two ways.,

1) The temperatture at time t may lie between T-q

and (T'-q)+ATo If now a reaction occurs in the

time dt, the temperature will be increased by

an amount q and thus at t+dt the temperature will

lie-between T and T+ATo The probability of this

event is clearly given by

[ P( T-q, t )AT] [p (T-q) dt]

The first bracket gives the probability of

temperature between T-q and T-q+AT at the time t0



a ~m 'c ~~cw:s-in tbe ti.nýN iterval dt 1"

,e ~ 'atiji T'.(I The pr'oduat of't.3

~ro pv ~ itie iv~:'os teprobability of

2)The F-).'~t>ree; trime t, may b's s.ighitiy

ou~i FVI'- tha -'L

dt i heat V orduc tion losl i r

tb~ tP oT.- Loet T' be the

tx :ii Jr~c; Thor If' the terriperAý;u*(;o

T'< f'i'(ji t J __ nri s17, t 4~

~ ~o r' &~c Jn i to ooeviv in 4I;he time intwevoal

nr,6 ii o p:o~bI ty' orL ths Is given~ by

IT'i ' (It Tic a p ( T i s mulli;iplie d b7d & and

is~tv s U-r~st order small quantity, we may

re~p..c*,- its argiuent T1 by T. Thus the probabilJ1ty

of n.". -i-n-tio'n ise giveyn by l-.p(T)dtz This imit-;

ho wttp:e~by the probability that the tentp-~

erain:.ro, is Tý at the time t. This is given by

6



1" T ~.Thv. , rmi(2 occir.9 ',71th thei

ill ,tý (30 AT [1-.P(T) dt]P(T` ti) AV?

AI P( T',- 12t) ATjftp(T.q) dt3

(TI; K(T'-1!0 )dt

AJ>()b:;~; ~ i~'~t ~theO &,,oltlov) (1) between T ' and

T~ w,-O~

AT' (k1+Kdt)AT

(o hoi idnucioniir prod-icao1 a com~pression of'

:eip~aiuo ii ~:1~by thý) factor This
1+Kdt

(oomprenwJon is e-wo',.y goon In the large time limit.

:rthe onlJy abanger- occurring are due to heat conductIon,

!.;hou ofd~s rt how broal ai dliitribution, P(T), we

b~egin with, in a very large time it nmust become a vory

narirox% p~ak. at the auribient to3piprature Too

7



If we now mRake the above substitutions• an6 cancel.

the comnmon factor AT, we find

(P+ AE dt] = [1-p(T)dt][P+ _P K(T.-T)dt][1+Kdt]
at aT

+ P(T.---q, t) p (T- q) dt

= P+dt([KP+KIT-To E..-TP]C 'T

+ terms in (dt)2 of higher°

Thus

-KPK(T•)• -P(T)P(T)1p(T-q)P(T-'q) (2)

Except where indicated in the last term;, the arguments

of P are T and t. This equation Is the basic differential

equation of the model,, The solution of this is considered

in the next three sections.

The boundary condition on (2) is limP(T,t) -- 0.
Tli

The initial distributIoci, P(T,O), must be given and will

tisually be taken as 8T-•To,-q) where 6 is the Dirac delta

function. TAis corresponds to a sin~1e reaction occurring

at t - 0 the,-eby 'ais.Ing the temperature to To+qo The

teamperature of the "point" can never drop boliow the

temperature TO of the surroundings. This Imposes the

condition P(T,t) = 0 for T Too



Section II. Then Meothod of Momnents.

In order to solve equation (2) we consIder the

moments of P'T) defined by

; o• .Tn P( T. t) dT

The zero moment, Mo(tP 4 P(T,t)OiT, is the probability

that the temrerature of' thn "point" has some value and,

therefore, po(t) =- 1, The f-Irst moment gives the expecta-

tion %or mean) value of the tempeorsturs at the point., We

will frequently denotr) it I), O(t)o Thus

W 0(v e(t) -~jT-(T~t)dT. (3)

It wi.•ll be most convenlent to Y,(edefitne the mmonomt:i

and measure them relai;ive to the mean temperature, 0.

This is a change from the cax'lie.r .port,. We defino

M n(t)- (•T-0)np(T,t)dT )

To

It is clear that MOW() = I but tbat now M1 (t) = 0o The

mean square deviation, M2 (t) , will be commonly deno'?ed

by A(t).

The moment equations are now obtained by multiplying

(2) by (T-O)n and integrating frovi T0 to G We will

treat in turn the terms in equation (2).

9



-u t 0; rd

atdt -S

dMn + nM dO

K f(T-0 npdT =JL4M

dT Jr 3~; ~T

K If(T0 ) n+ lp dT A- K(e-T f '('T - e d T

aT

+K(O-TO) J (~T,. 0)fp] n~fP(T-(3)1T1]1 dir

To'

where we hava used thr3 conditi.on that lira P(T,t) =O

Thus we find

K ' (T-63)"(T--T 0)T~dT =!-(,n+I)KM n nK(G-'T )"n-
40

Nothing can be done with the term

-f (T-9O)np(T)P(T) dT

TL



9

The term ) {T- p t pT-q)Ff']!'q)dT can be rewritten by

letting T y+qo It becomes

( (y-O+q)np(y)P(y),,y
To-q

If we remember that P(y) = 0 for y,<T we can change the

lower limit to Toand if we now replace y by T we get

f(T...e01() "p (T) P(T) dT

Putting all these ternis together we get the moment

equation,

d M 1 l .4d D Md JI AX• n K(G-•TO )Myl-!
dt

+ j•p(T) P(T) [ (T+q-O)n (T-i0) ]dT"To

The first few equations are:

n=O dMO

dt v Remember that M IO by

definition,

n1l dM•. de
-- , --- + M -KM, + K(O-To)M° +

But if we remember that M I and M, = 0 by0

definition, this becomes

do K(O -T +) (I /j p(T)P(T)dT

)•TO

0l



dtL.~ + 2K A p (T) F(T)c1 e+2 q(CO. ) dT

dt d
dt+3•KM,3 : A.••°3( •To

+ p(T)P(T)[ C-3q( T'-)+3q(T'(•) 2 ]dT

The higher order equations may be simplifled by

using the 0 equation to elir.Anate L. If we do this we
dt

find for n >12

dMn d
- nKMn nqM pPdT - pP[ (T-B+q) n_ (T-0 )n] dT

dt n n-i , 1

We then have the following set of eq.uations for the

moments:

M I
0 0

-+ KG - KTO + q pPdT

- 2K& Aý PP(q"+2q(T(OTldT 06)

dM3
d"- + 3KM3 pP[ q3+3 (T--) + •qt 9) q A dT

etc.

We must now show how P(Tt) can be obtained from

the moments. To do this we develop P in a series of

12



flermite Vfunctions.

P(T,t) = C n 0n(t)Hn(s) (7)V 2¶a n=0

T-0where s -2

H the hermite polynomial of order, n.

a is an arbitrary parameteo which will be fixed

in a moment.

Such a development is always possible. Using Ihs

developroent, we may calculate the woments of PF This

is an easy matter if use in made of the orthogonality

properties of the Hernmite polynomials. The results are:

M C =-Co honco =C

M, C1  hence C0 0 since M 0

M 2  A = a + 4aC2 thus if we put a =A then C 2  01

M= 6(2a)3/2C - 6.2A)3/2

10C -:(6(A)3/

In general
1 (-l),' Xn-2m

-n = - 'n'-2m) 22M

with N -

We see that a knowledge of the M's determinea the Cis and

thus P(T,t)o We have

P(Tt) 1 [I + MH(s) + ] (8)
772•A* 6 ( 2 A -) 3

13



T-0

where s =2 It is clear that choosing a A

gives the simplost possible expression for P in terms

of the moments.

Section III. The Saddle Point Method.,

We now show how the moment equationa (6) may be

solved. The difficulty lies in handling the terms

involving p(T) on the right-.hand side of the equations,

We note from equation (8) that if M1 is sanall enough to

be neglected, then P assumes a -very simple Gaussian forr.

P(T,t) - 2 e a Thaus In the 0 equation we need to

treat the following integral

U

I = &A A-/ e-

TO

In the A equation we have the integral

U e-IT o"

- Le 2A [q2+2q(T-O) dT
J= T 0~

Since we are neglecting M., we go no further than the

8 equation.

If A is small, the integrands of both I and J are

very strongly peaked at T = because of the factor

e- 2z . It would therefore be a good approximation

to treat the rest of the integrand as a constant equal

to its value at T = 0. In this approuimation I becomes

l fdT



We copmit nr-gligible error by replacing the lowey limit

T0 by -k-fand the integral is thon trivial. We get

I qUe

In the same fashion

j = q2 Ue--

These results can be improved upon by the saddle

point method. Use of the s~dd:e point method allows A

to be larger. Let us apply the saddle point ?'ithod to

I Ide wr, i e ,

T-_ _ I A el/A F(T) dT

where
F(T) A/T - -(T-O)z

If we plot F(T), we have roughly the following"

F(T)

15



rapidl~y to migqtivn vaiiuo:s on olhar .ýidoý Thims

tho major ýccntv1but,1rjn to the. -Intogt-i-al com(o1 from t-he

neighbo),hoocb of the -peak and ithn smllarie~ A ts the inoro

nearly Is tbis trac, The poak of 1 1 s aL it a n r Z

mnay be foun(c bv pa-l-,ng, V!(T) C0 A.

and Zý is definc(I 0L)YpiA.c~it1l y

A/Z, Z. o)

or

Z 0 i-A/ZM

We scle th~at tho naJe A t.h;~ e marox* i s Z to O0,

'Me saddlo pol1HU mothod nomi conisi.st;o of' nxpunding F(T)

about- T Z,

F(T) Bt(Z) + Fý'(Z)(T~-Z) :itz)Tz +

If we def ine R~ A/z 3

1 $ 2R~

it is readily soen that

F(~Z) 0

F Z)

F"'(Z) 6R/Z

16



We n _ ( w• r -I,, ,)S

0  dT

qu~ .1P (TZ)./)A/2

where we have neglected h:igher terns In the expansion of

P'(T). If again we rep'.ace I-e lower iMmi t by - wo

have a simple Gaus, Integral and we obtair

I :•q•

We note that for vox-y ,:miall A; .R GiG , G*L and Z<.'O

which gives ut, I - 11' -,UP""/( ,i before,

The J' Integral is tretrnd tIn simdi.ar fasbhion, We

wrl to

u Ft T/(T7.7+ ?7HT

U q'+2q7,-(, FT)

4- -l- - F( T) /A
2•£•. T •-t~Z) 0 d(T/AT

P 2•t A T.

The first Integral In the one we have alrt-ady treated

and the second Intogral vanishes In the approximatlons

we have made. Therefore

RU-. [q+2(Z- ,) e (z)!A

G.7



It is not nec 7.ary t[,, negloci the highor

powers of (To.Z) In the expa1nson of F(T),, We present

below the results to the next order of accuracy,, The

details are rathor involved and we refer the reader to

Morse and Feshbacb "Methods of Mathematical Physics"

for a general treatment of the saddle point method.,

In surnary:

J I e. 1,ef Z)/At[ (q+2RZ) I.--B:1.4B ), 2{• ~ )

where Z 8 4 Ai7 Ft4-) A(1+4i1)iz

R A/z 3

G2 1-' •2R

B 3-./2) (9)

(212

B . RfeZk

B3.2• 1512 R3(2 6R+RE)

The B terms are those which arise from the higher

order saddle point treatment of the integrals . These

terms are negligible if A is sufficiently small.

It should be mentioned that these same techniques

are still applicable if the higher moments (M;, etc.)

18



are not neglected. It Is then necessary to use the

saddle point method to a higher order of accuracy_

We are thus faced with the problem o; solving

equations (6) and (9). With the neglect of M3 thrjse

become

S + O KT + I

a~t 0

dt (jlo)

7t + 2KA J
d~t

with I and J defined by (9). The initia'L conditions are

0(0) T0 + q

The equations (9), (10) and (1,) forli a clossd

system 1 whi.h can be :itntegratvd numet'ical]ly,. This system

was pr'ograrmmed f'or thi IBM 611.(D compute' fakd twenty holirs

of cormpitatloi, wore er~i• rlo( Tbese computatlons soor)

i~ndL•,tod thOt ,]thrue]- A C) 0 for •- 0, I t rather cliOck]y

grnw:". to 1uo0 a lna3'fe vaslue ri to inva]..dante the approxi-,

mations made earLler on the assumption that A v-at: ,nnhall,.

Purthf~r, as A grows in size i;his is Pxi Ind'IcAtiton that

the higher moier.ts, Mm etc.,, are almo becrming !..portanto

We see, therefore, that the above toehn.qules, whleh in

principle will yield a solution, are !in pi-aRtice niohh too

tedious to be useful, In the next secton ,orwe sec how -this

diffle(ulty can be circumvented., The tech bif)es we have

devoloped in Sections 11 and IIl are st,.i .appticao.e but

1_9



4 3- I - *'- -i ii k i

The equa.ifon we wish to solve o

KP- K(T-To)<, -p(T)P?4) + p(T'-q)P(T-q) 7.)

with the initic]. ,•ondltlon: P(TMO)

Now If there were no reactl.o.s the In-.t.Mal

fuinction distrP-but.on would riovr -; lower temperature with time

but would reonaTn a f functifton., xn fact, I.T we def ine

YVt) to be the solution of the eoquat~on:

dY -*Vq + (

d-rC[<Y.-TI . .....

it is clear "hvt 2(t) repre•r•eti theo temipeo;ature our "point"

would have If Jt simply lotws hoat by conduction no

reactions

It Is now nvidenU that P(TA~) ~(T-Y(t)) should

satisfy (2) with the ieact•.on terms omitted; namely

K.P K(T-. o) (13)

To verify this note:

p dY 'p•=-d-- S (T-Y), ',)-T (T-Y)

Substituting in(13) we find

- S(T~-Y) - K (T-Y) =K(T-T 2(T-Y)
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or [K(T-T ) +T-Y+K .,I 0

Now using (12)

[K(T-T) K(Y-T) i S(TOY) + KrT(T-Y) 0

K(T-Y IV~-Y) + K 5-1,T-Y) 0

Ti~ing the property ot the • function Uhal;

Xj W x) w ~ e hay e

K ý5(T -Y) + K (T-. Y) 0 qe d,

Let us now consider tWj. o. & reactioni,, Tho

S function will not only sink to lower temperature

because of heat conduction, it will also decrease in

amplitude due to the occurrence of reactions. This we

may take care of by writing

A(t)M (T-Y(t)) with A(O)

As time elapses the probability of a reaction increases

and this means the function P(T) will begin to grow a

little bump in the neighborhood of the temperature T+2fqo

The probability at To+2q will also be undergoing reactians

thereby building up a probability bump in the neighborhood

of To+3q. Thus after a short time we would expect P(T)

to have the indicated character.
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P(T) 
fct. at Y(t)

small bump at -Y(t)+q=To+2q

--small bump at=Y(t)+2q

This picture suggests trying a solution of the form:

P(T,t) :nA(M)- (T-Y(t)) + Z Am(t) iit(T,t) (14)

The u1 
1s will be taken as normalized so that fUmdT = 1.

Also urm is localized in the nelghborhood T •Y + nq.

Thus the problam becomes one of determining the A's as

functions of time and the uals as functions of T and %,

We now substitute (tI,) into (2). Because P(T)

is different from zero only in well separated regions,

we may eonside_ individually the various regions. Consider

first the region in the 'vicinity of T - Y(t). What terms

in Eq. (2.) contribute in this region? It is easy to see

that we haves

[A-KA + p(T)AIJ(T-Y) - [Y + K(T-T,)] A'(T-Y)

and these terms should equal zero.

Now using (12) we have

Y + K(T-TO) 4-K(Y-T ) + K(T-To) = K(T-Y)

22"



Remembering that x j x ?-(x) we ge;

[A - KA + p(T)A] A (T-Y) KA(T-Y) e"(T-Y) = 0

"-6( T-Y)

Hence [A -- KA 4 p(T)A + KA] ý7(T-Y) - 0

or I
'A + p(T)A);'(TY) - 0

Because of the C fun'2tion we may iso write this as

(A + p(Y)A) •(•TY) 0

For thlit to vanish %ye f trd

Thts re.iult coild clearly habe been written down

immediately. It simply say:, that the amplitude of the

f,,nctionat Y(t) changes due to the reactions which occur.

Consider now the terms which contribute in the

neighborhood of Y(t) + q. Thcoe torns are:

A 1u1 + A.,u3 -• KAIu3. = K(T-T )A,+ -p(T)A~u 10 (16)

+ p(T-q) A•(T-q-Y)

Note that the tern p(T-q) P(T°-q) in (2) furnishes the

connection between the two regions,.
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For :. 2 wehavo In Soneral

Aum + Aqi-,KAmup, fT, TO) Afaý pi'T) AU ~ t

+ pkT'-q)Ab UR ~T- q)t17

How shall we stlvo these ecquati.nsý' EQ. C15 Is of course

no trouble, btm: how do we treat 1-16, and t17)? Tho moment

technique 'is ~applic able,

Let u!3 define: ~T 1, dT

arA m i T, 011, U Y dT

ConsJ der now Et ..16 We wi) I :itippwooss the m I subscript

and wr-ltt M nKii rather t~han N11 01,, A~ utiup.-.y (3J6)

by (T-O)n and Avit~egraidng w-o nijevi; ihý foloiiolg- t~erms

A, ~(T-0.) IudT AIM

A, A- ~~~~d T- !0) r)udT+ (T-)1mo*

.1T1

U, -8 VdT IýA-' 4.

'.3T

=KAIJ(T T-E0 )(T+e)u- dT + A 1 J(T d~eT0 T)"d

KA1 ~ T 0 ~

= X 4 1 1n* f lJ -f ( T -Oe ) n -dd T -- n* O Te= T )J (T -.E)) '1 u d T j

KII(n+1)Mn + n(O-TO)mn;l
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C) V )f l6' . Ichc-ArM)t hO ~l i

+ -. pJ,',k qC -Y d ', -. Al,,4,'AY)1' P

Thatt~ng, thcac WIog hrweId

n' D -- I

- , j(-0 p~T1:T1d fox various n.

By dcQ`Anltion T IMO ~cm3 (8 orvrosf

A, Ap Y'f-E))p(T)-u(T)dT
n .i AEe - T C, A Y'~L

n'2 Do n'A(3 Mr! by A

Aj6 A- *2- '3( Ap(Y) -,Ytq-.GY2
.r 2

A) -~'*O pýýT)-j(T)dT

We may use thc 11 0 ýti o to --tinrte Afvons the n=2
e q'uation.

A1  A - PKA>9 2 Ap Y) /6Q.)

A, 9.,.- 0)2 At' pýThiiVdT

if we assume tho higher iwy,;ents are negligible, tie are

led to tbe following syitern of equations:



A p(Y)A (19-1)

A_ Ap (Y) Al. (p(T) U(T) dT (19b)

K 'O-'r0  fure) p(T)ujýTVdT A T-pYN~-0 :90)

-0) A~ jrp T)u "P) dT A A

(l9crA

Mote che J11tor)y'otatiOn of (:19b). A]. mefsure-, the

total probabltilty of tho fiy,1rt bum~p fl-ne 11 1-, nor-malzed to U-nit

pr'obabillt-r) .How does A, hAaange? 1It gainn~ Zorr re~cti;ons

ocurring at LN,- ;f urmc;;iori I n fp(V) I and It luz1es bocausA

r'eactions occur~ at tho Orsi buxtrp o4jýi "transltions" to

the second burap [temi - A-1  Is)TcT~,~1 of course

still an mikynyyn -Punct-on~, 1joiwmvfi, It caii be e.%andod

in Hevrmf1tý, funoions Jusit R.9 wasi in Soct-tcrn TIT

ii ~26

The coaff21 eni.8 OD Rro i'oatad to t~he moments~. It ie

eany to show that

2Note: C, and C2 vanis'h
K.because yeo defined 8 as theC~ =0 since Me mean of u and A as the nicarn9square derivation of &

Ca = 1
6(2A) 3 / 2

C1 =..I (-I) K - 2K N -
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Sinco I.i assuvivn M., and hlgher aro r, egiigJ.bla wiz got

1
U ~ 2A (21)

The u in (19) Js to be Interpreted as (21) and then

equations (19) forin a closed system for the quantities

A, A1 , 0, A, all of which aRe functions of' t.

The saddle point method of Section III may be

applied without change to the integrals of (19),

Omitting the B terms we have

ell-(T)U(TP)dT tý- , .,I /P~ G

AT0p()cjTd eZ-' a-(I•)(2

It must be remembered that we have been looking at the

first bump and that many quantities in equations (19)

and (22) need the subscript "

The higer bumps, mn2, are treated in exactly the

same fashion. The only difference is that the 4 function

is no longer present for m ?2 and therefore those terms
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~~~~~,-1A 11k iw, v (O ihnh Inviolve Y are

replaced by int.seg..a

We give be-ow the oomp0eto Set of equations for

the •function and the first two bumps. The equations

for all higher biý•9ups are obtained from those for mr 2

by simply changing subscripts.

rw]=O A -pý'Y)A

A, Ap(Y) - A, p(T)u 2 (T)dT

4'ý+•£A ."Y) (Y+q-e0)

m=1
,83 -2( .[(T-.0•, -Aj. p (T)u2. (T)dtT

A
+ A7•(Y)[(Y+q-o01 )2 •.-AJ1  (23)

The integrals ar•e givei by (22) with 9 = 03,

Z = Z1 , A t A1 , G = G, R -j', Z, G, and R

have the same definitions as given in Section III.

A2  Al Jp(T)ui(T)dT -¶ A P (T)u2(T)dT

02, - J1 1(T-9,,)p(T)ull(T)dT

A- + •2k M!,(T+q-.] )p(T)UI(T)dT

-2 _

The integrals involving , are given by (22) with

8 = 82, Z = Ze, A = A2 , etc. The integrals

2 L



involving Uj arn slightly different.

(q-,)()jT)d{~T = : [•+(-92-

,(qfLT + (Zi+q-E 2 )r=1 ]" o 2G3.F

The initial conditions are

A .1, An 0 f~or m' :L

0, To+ (m+l) q

Am 0

This system is amenable to solution on a computer•o

It has, in facL, been prograiTmed and preliminary calcula-

tions carried out,, The results indicate that the bumps

remain very narrow and thereefore that the approximations

based on small A are very good.

The actual calculations are, however, performed

with the modifications of the next section.

Section V0 The Expanding Single Point Model.

As indicated in the introduction, it is possible

with minor modifications to convert the "single-point"

model into a much more realistic model, It is the purpose

of this section to indicate these changes. They are two

in number; one serves to remove the restriction to a fixed

29~



numberX of moloecu]es i.n the heated region - thus we

tern this the expanding single po.nt" models The

other change takes into account the fact that ihen a
I

molecule reacts it is then uravailable for further

reactions,

If an amount of energy Q is released at a point in

a medium at t = 0, then the heat conduction equation pre-

dicts a sphoeical tenpeoratnre distribution given by

where C is the hest capaelty per unit volum.o

k
D = c k is the thermal conduetivity.

To is the initial temperature of the medium.

This temperatulie dist-Abution Is quite well approximated

by a distribution fhicth is conritant from r -f 0 to r

,FiDt and drops to To for , In order to conserve

heat energy the constant value of T must be

T T +. . I- , Thus we approximate (24) by
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The heated region is now seen to be expanding

with a radius proportional to V t. The volume of and

therefore the number of molecules in the heated region

grows proportional to t3/2,

The quantity K introduced in Section I described

the change in toenperature of the "point" due to heat

conduction and was so chosen that

dT- )

If we diffarentiat;e (25) we find

dT 3 ( PD)
32~tC 1[32¶C (Dt)3/2

2 t

Thus we may idenl;fy the K of the preceding four sections

with 3 1 in order to go to the expanding point model.2 °

The fact that K is now a function of time in no way

invalidates our previous development.

If now a second reaction occurs we again have an

energy release of amount Q0 We must now assume that this

energy is distributed uniforrly over a region of radius

1Dt in order once again to preserve the single point

character of the model. It is easily seen, from energy

considerations, that this will produce a rise in
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temperature in the amount

32i C (Dt)3/2

Therefore the q of the preceding sections is now to

be taken as a function of t rather than a constant.

Again, all previous work is valid with this change.

Now what changes are necessary to take into account

the loss of available molecules as reactions occur. We

can introduce a characteristic radius, re, such that

34ro3 = e the volume per molecule. This leads to a

characteristic time to which is equal to the time it

takes the heat pulse (25) to spread out over the region

occupied by a single molecule. It is now clear that no

reactions can occur until tý'to because only then has the

heat pulse begun to move into a region whore unused

molecules are available. We seo then that the number of

molecules available for reaction at any time is propor-

tional to (t3/2-.t 0 3/2), We should therefore write p(T)

as Ue-I/T where U = V(t 3 /2,.t 0 3/2) with V. A A is

the frequency factor of the Arrhenius equation.

These remarks are valid if only one reaction has

occurred. If, however, two reactions have taken place,

we have used up two molecules and we should put

U = V(t3/2-2t 3/2). Hence, in the language of Section

IV, we see that when we calculate with p(T) at the 5

function peak, we should set U equal to V(t3/2-t 0 3/2).

When we calculate with p(T) at the first bui•p, we

must set U equal to V(.1--J3/2)
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At the second bump U - V;tK-!/2ý2t 3/2), etc0  In all

these expresrions If t is such as to make U negative,

then U is actuallj zero.

We see that the higher bumps are only activated

after an appropriate interval of time. Thus the first

bump only begirh.t to appear v-•hen t'>to, the second bump

when t •2 22/3to0 eS' c This hias the effect of changing

the initial conditi~onsi asso3ciated with equations (23).

It is clear that the calculations with (23) begin at

t = too For •,to A -n I and A. = 0 for all ra "to"1

is a natural time un:.t and in the numerical calculations

to has been set equal to one° The Initial conditions

for the first bunmp are:

A, = 0, A, - 0, 01 = Y(to)+q(to) when t = t;

The initial. condi1tions for the second bump are:

A2 = 0• E; =: e( t i) +q( t) A2 =-at0

2G1x'(tl)

when t ti 2 2 /3to

Similar conditions hold for all higher bumps.

These changes seem to complicate the equations a

great deal but, in actual fact, since the computations

moust be done on a digital computer anyway the complications

are relatively minor.
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Section VI,, Prob.bil'lty of Initiation,

We come now to the important question of

determining the probability that an Initial reaction

wil.l. lead to Initiation of explosion. To answer this

ie must consider the behavior of the bumps with time,

In particular the beha'vior of the biunp amplitude, Am,,

If w6 look at some bhup, saay the mth one, we see that

it is gaining proaability from the next lower (in-l)

bump aind losing probabil:tlty to the next higher (r-+-)

bump., At the ssnije time all bumps ar.0e sinking to lower

tompr-ratu'e because of hent: nncl1Aton. When a bump is

fPrst acglvatnd it w.i.l gain more from below than it

Icses above0  ]i; will thus Increase in amplitude for a

-sime. Eventually it will begIn to lose more above than

it gains from below and the ampJitudo will start to

dvcxea',1,, Now the m-l bu•rp evontually sinks to so 1 .w

a temperature that it no lcnge:c feeds the mth bump. The

mth bump continuos to feed the w+l bimp and now we can

envision two possibilities. 'Che first possibility Is

that the mth bump continues to transfer probability to

the m+1 bump so rapidly that Its amplitudo, A., goes to

zero before It sinks so low in temperature that It can no

longer undergo reactions. The second possibility Is just

the converse, namely, the mth bump does not empty itself

before Its temperature gets toolow to produce reactions.
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In this case A will approach some constant, non-zero

value.

In essence, the above paragraph simply states that

lim Am is either zero or non-zero. However, the above
t-W

remarks also make clear the fact that if lim Am = 0
t"

then lim AA rý, 0 for all P,> n. Also If lim A. is non-

zero then likn AR i. non--zero for all 19- m0  Thus the
t -.;P

Ags split into two groups defined by some integer

m such that

lim) A,, 0 it) ý'C

lir A 0 m

We see that all bumps with m 9 represent cases where

the chain reaction died out and did not lead to an

explosion. Therefore the explosion probability Is

given by

I -iim (A+Al+A,+ AN) (26)
t 401

The procedure then is to integrate equations (23)

out to the last bump for which A does not go to zero.

This determines • and then (26) gives the probability

of explosion.
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Section VII. Numerical Calculations

In order to proceed with numerical calculations, it

is necessary to arrive at reasonable estimates for the

parameters of the theory. Since at this stage no effort

is being made to make a direct comparison with experiment,

we are only concerned that the parameters have the proper

order of magnitude.

As pointed out previously the quantity T, referred

to as temperature, is actually being measured in energy

units. That is, T actually signifies the temperature

multiplied by Boltzmannos constant. The natural unit

for energy is the activation ehergy E and is of the order

of a few electron volts. Since most explosives undergo

thermal initiation in the range from 2000 to 4000C we

have taken To, the ambient temperature to be of the

order of 600 OK. In energy units this is about 1/20 ev.

When divided by an activation energy of about 2 ev., this

gives a To of about 140. Thus we have calculated with

a To of the order 0.02.

The quantity q is given in Section V as

q = -I- Q which we write as W Thus
32- C(Dt) 3/2  t 37 2 "

W = Q •where
32% CD3 /2

Q is the energy release per reaction

0 is the specific heat per unit volume

D = where K is the thermal conductivity.
C
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Specific heats are of the order 0.5 cal/cm3OC and

thermal conductivities range from 10"5 to 10-2

cal cm sec0 C. If we take K about 5 x Io04 we find for

D a value of 10-3 cm*/sec. Now the characteristic time

to is defined as the time required for the heat pulse

to spread out over the volume occupied by one molecule.

According to equation (25) this means equals

a molecular radius. The unit cell for the azies has

etmensions of the order 6 Ao Thus if we put D 10-3

and ( = 3 x 10-8 we find to 2 x 10 1 3 see. Thus

our time unit will be of the order of 10-13 seCe

To find a value for W we proceed as follows. I1

we measure time in units of t then W is clearly the0

temperature rise produced by the reaction after a time

to, i.e., after the energy of reaction has spread out

over one molecule. Thus W = Q 3. . Now

32% 3/232i
32 (Dto)3/2 is just the volume occupied by a single molecule

3"

and is of the order 10-22 cm3 . Q, the energy released

per reaction, is of the order 10 ev. and the specific

heat per unit volume is about 1.5 x 1019 ev./cm30. These

give for W about 50000C. Converting to electron volts

we get about .5 ev. We now must divide by the activation

energy EAt'2 ev. and we finally arrive at W 0O.25.

We have written p(T) as V(t3/2-te3/2)e1I/T.

If we measure time in units of t this becomes
0
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V(t 3 / 2 _l)e-VT. Now when p(T) is written in the form

p = NAeE/RT , as is customary in the chemical literature,

A ranges from 1013 to 1019 see-1. We must convert to

our time unit which will change A to range from 1 to

106. N is the number of molecules involved, which in

our case should be taken as one. Thus we see that V

should range from I to 106. We have calculated with

V = 102 and l03.

The following graphs present the results for

calculations with W = .23, V either 10' or 103 and

To either .019 oi .02. These calculations wore carried

out to the third bump with the hope that the value in

defined in Section VI would be reached. This did not

prove to be the case as the results show. The calculations

did not extend beyond the third bump because the program,

as written, used the full capacity of the IBM 650 computer.

However, the results show that the bumps remain much

narrower than expected. That is, the quantity &,

which measures the width of the muth bump, remains very

small throughout the calculation. This means that to

very good accuracy we may ignore the width of the

bumps thereby greatly simplifying the calculations. We

have almost completed a new program which can compute

an unlimited number of bumps.

Although the calculations presented do not reach

the value F, they do otherwise exhibit exactly the
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behavior predicted in Section VI. The bump amplitudes,

Am, start st zero, increase to a maximum and then

decrease finally to a constant value.

Section VIII. Conclusions and Recommendations.

The calculations prssented are extremely encouraging.

We feel that the nearly completed program, designed to

calculate an arbitrary number of bumps, will allow us to

reach the F bumps. This will permit computation of

initiation probabilities. We strongly urge the continua-

tion of the computational program.

We have just recently made some progress in an attempt

to obtain a completely analytical solution to the "single-

point" model. Such a solution would be an extremely

valuable addition to the numerical results as it would

allow the general nature of the "single-point" model to

be more adequately explored. We feel this to be a very

promising area of investigation,

Perhaps a few remarks concerning the significance

of the model are in order. The model is admittedly

much simplified, We feel, however, that it is a signifi-

cant exploration of the probabilistic aspect of the

initiation process. After the changes of Section V, we

feel that the only seriously unrealistic aspect of the

model which remains is the matter of assuming that the

energy Q of a reaction is spread uniformly over the

41



entire heated region. It is clear that a more realistic

treatment of this point would make the probabilistic

approach even more necessary,

It is our feeling that a completely adequate

treatment of the initiation process might contain the

treatment of this report as a bridge between a more

detailed treatment of the earliest stages of initiation

and the latter stages when the heated region has grown

to a macroscopic hot spot for which a probability approach

is unnecessary. We have begun to look at possible

approaches to the earliest stages of the initiation

process and have some indication of progress in this

direction.
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M. Mizushima and D. G. Burkhard

Section 1. Probability of Reaction as a Function of

Intermolecular Distance.

The potential energy may be plotted as a function of

intermolecular distance as shown schematically in Figure

1. In the diagram r.

is the equilibrium distance P.Ej

and the curve I gives the

potential energy as a

function of r . If the terap- II

erature is not high,

molecules in a solid will

vibrate about an equilibrium I I
I I

position in an approximately
simple harmonic way as will r

Figure 1
be discussed in the next

section. If the amplitude of vibration becomes large

enough, the substance can go into new equilibrium config-

uration with potential energy represented by curve 11I

If the amplitude becomes larger there will be a probability

of the reaction

N5 + N- --- 3N• + 2e (C)

where electrons on the right-hand side are taken up by

the metal ions.



The situation can be 1iiustjoated 9,hematically by

means of a series of equipotential energy contours as

shown in Figure 2. In this diagram the potential energy is

expressed as a function of the Na- - Ns separation and

also as an average of the N2 - NX distances. The solid

equipotential curves show potential energy contours when

the 2N1 configuration is maintained. The dotted equipo-

tential curves schematically represent the potential energy
I

contours when the nitrogens become predominantly N. groups,

betweau ,
N2

K-- ,---- -

0
distance between Na

Schematic of Equipotential Contours

Figuro 2
Since the cotwU~gurations have different electronic

structure# the two potential surfaces can co-exist at



each point of this diagram, The miinurni of -olid-lined

potential surface, of course, corresponds to the equilibrium

distance of Ne ions, while the doeted-line potential surface

does not have a minimum except at infinity since N2 molecules

are known to have no bound state (a N 4 molecule). The cross-

section of this diagram along the broken straight lines is

our Figure 1, where the curve II is for the 3N2 configuration.

Reaction (1) can occur if one brings two Na ions

along the curve I and crosses the point where aw(r o-r)

is a 0  This ao is called the critical anplItude. It is

possible, however, that even if the Nt- ions are put together

with distance smaller than this critical amplitude, they come

back to the 2N• configuration following, the czirve I. They

have to Jump into the curve 1I In order that reaction (1)

take place.

The probabilIty that molecules jump from the curve I

to the curve II can be assumed to be proportional to the

time that the 2N8 system spends in the region over the

critical amplitudo ao. The probability can aotually be

a rather complicated function of the Na- distance. The

above assumption corresponds to the simplest case that the

probability is constant only if the distance is smaller

than this crltical amplitude.

The tunnel effect can produce the reaction even if

the amplitude of the oscillation is smaller than the

critical value, but the probability of a reaction through

such a methanism must be negligible.



Suppose a. is large so that classical mechanics

gives a good approximation, If the vibration is simple

harmonic, the displacement x is given by

x x•! x sin wt

dx

Fraction of a period spent In time dt is dt/T° Thus the

probability that the particle be found In range

xVx-+dx is

P d dtt dx dx (2)

Let _ t(x) be the reaction rate when the particle

is at x. Df a :eeaction oocvurved only for x - a. then

f5(x)6(x-ao)dy, ,- !(a) , for example,

If there is a certain probability Pdx of particle

being found between x, and x;dx then Pdx gives the

number of reactions per unit time while the particle is

in the range xmm~dx. Thus the effective reaction rate

for the slmpl.e harmonic oscillator is

_Pdx - I -(x)dx (3)

1. Suppose the reaction rate is such that

(X) tif x > a

0 if x<a
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where ., 's a cuonstant. 711e effective reaction rate K is,

from equation (3)

K•.1 i rxO dx S=_ -f(5

0

Cas•i Model for :eactlou rate )(x),

Figure 3

f is Juis:t the fraction of n capable of reacting.

f X0 dx Isin-l x_. X0 1 Ir sin- Ia

0 -X 0Ro

so that
K 1 0 if xo < a0

[• s-I aql(6)
K 1 - sin- 1 if x > a 0

xo o



.. 1

Case i, K.(n) as a function of amplitude x.,

Figure 4

2 ID) sovie t:ases ora i-ay eoqoect the reaction rate • to

be a~ J.-~a fi.unction aa sbown ini Figure 5.

0 o

(Case "_ a del-ta funotion at x ao0
Figure 5

Is, f~aob(x.-aO)7

J- introuced 8o may be of the same dimension

as •;i"In this case we. denote the effective reaction rate

ionstarit by Ix,

h 3



(ine o;: J' \.2 " equ.o \'3) agains

PA) •(•'' a. o X0Yf.- 6(X- a- o) d -x;{
: .•XO ft . XO[0 "X

InteFpating thic, on.: hao for the effeotive reaction

rale K2

r0 If x <a
0 0

a, (8)

A qualtItative p.Loi- oF K.2 a,- a. Tunct:ion of amplitude

A0 iv jhow:,i in Figuji-

00

Caw•, 2,, K2 r a fuintlon of th•e amplittude xo

F1igu;re 6
3 Trq c an be a n:owe stcl) that t1he reactlon probability

ii ,a i]n'a. .uncti.or of th, velocity and occurs when

a -so t at Itit i.- given by t:he operator

'1ý ) ý 'z•- )v (9)

•,t<:0



e(A ýi~ JEI e -, oif o ý f, 11 a t Ion a~n ci t le v e 1o i T'y

Ih ac) 6os x otiso)e~

ýZ- PE (.-avd l3Tw /P-ý-ýF dx

0 L 0 (10)

t-ase ufl'o~cttrric ~ ~ nrate is si.mp]-y a

on~~v4 da~v .~ ~npi.1tud *'~--c-orjo F. Y)ot of Ka as

o funoc"lon ;t.f as, 8ib ~ ~r-~ S own in Pigure 7.

(Ja~~' Co a .function of~ ihe furplitude xO

Figure 7

~o c-,t Zc:, IT, Pmi~on Approxf-'7ation,.

'ftn o-cde-v to oblae:In the ove.-all reaction rate, that

--, ho totel n umbe.,- of reac-tions pcer seusond per un~it

mnass W' a sol1 di which 1-i in v. thrrm'al equilibriumr, itis I



Ynnu n~cvip~4 i:y to calvcu* at( 6.3stribution of Amplitudes

.,at a gijion teropervtuxre.,

Itn thc E~instein approximation we regard the crystal

as con.91st.-'ng of NI incdepenc~ent oscillators, all of which

ar'e vilb:rat` no with the coriimjn circular frequenoy Co. I f

wo as.;-ui-ae that the c.,.ca-Lli~tors are harrmonic the energy

,41aiih _3s , ;.r quarituit'r mechE!n.ios , rnic) whera ni Is the

queflt-,iw nvx.Jý1 32 and Yt-(.,, ttaiiE n orp-osi tIve intoger ~values.

(12)

ThN o P~1 0)IM11ty u2" fr nd-tn! anl oncillatoj,' IrYl the

4ua~u31 :*j~i 3 Y) Is g5 -,JC~fl 1,y

e r4f(,/kT
(13)

E~~~In wE.i able to ticcouni; foim the es',z~ential behavior

u:~h'lhat ~apaeit~y o-ly' aJ by this mrodel. By mieans

of;hi 3 ;rioe.31 one na;fow calctialte an average reaction

-i~ nu u )or cof t~eactlonmý W'Alch occu;p In unit t-iine

,3!r C , .s -lien gli je r bi;,

K.I



w K'e >tithe ei9ctive" reaction rate ca! cýulated Ini

the preo Joins i~e'o exprcstsed a.s Pa function of the

quantu-m -ntum-bar n. By*,, sini*irg thruee expressions for K

obtained bef ore we can perform' the above calculation

as follwos:

I n0 Eco/kJ15

a 'q/iTto efOT n V

where 0x MW~

Conlut tb per t Ior. ul the integralIt i- 0

The Ispoqen tal is s max a-'-,a n no nnd decreases very

rapidly oz, I 1n(I 0Feas 3, Thierefore an *uceurate expansion

for sin ( 1 nH1!-qlcionly for .nvn (shin- /n O/i?ýA2

Nowi Mi1,/-)v2/2 vo -1- qi-~' Iy/2)

Let z = y 11a2.-,,1 t r2 3 (l1z slimn.-e z 'flI, leot 2 tl11-z

The,- )112 ( -1 slxf-'-z

So that ilnoL nh)/n) 0 ¶/¾0n)n~



•no~ ~ ~or A n 'tn _

So integral A-c- K2 in

J. ac (,,"On/-d.

0•--9o ,.:T n .

L~e¶trg 0~ if 1 c*IaI1

I M/0- /T 2l:

Ph4.,.

,lase

S}) .f4 cok/j

" 0 .. 1- ,•

~-ho . !

"al ',tw,} k



1-0 e~/kT (2hi) n-( ; -(a o

a•
where no b

0 2h

Consider the integral, I f- bdn. Let -dl n-n

-Jo

Letting a-1

I 2e'bno f OeGc = e-bne

tf

Thus

'13-'T -Tb /T

'~ (1 0 /T)

Case3

For • the integral is simply

X3 ,2.5 .''-•/'d

no

] 2kT 1-r/k

1-0-o/kTno
T eT0/T (18)S-O /T

with the same expression for T. as before.

In.order to compare the theoretical models with

experimental results, it is necessary to know how K varies



with T experimentally., The principal variation of K with

temperature, of course, will occur via the Arrhenius

factor because of the large values obtained for Ee (of the

order of 20-1LO kilicalories per mole). The "activation

temperature", that is, the quantity E,/R% will then vary

between 10,0000 and 20,0000 Kelvin. At the time of this

writing, we have not had an opportunity to examine all avail-

able experimental data on the reaction rate constants as a

function of temperature in order to determine whether the

smaller effect associated with the f(T) in the reaction

rate constant E Af(T)e-Ro/AT can be separated from the

effect of the Arrhenius terra esEiR (when R rather than

K appears in the exponential, it is understood that E is
0

then expressed in calories per mole)o Careful study of

experimental data should be carried out. A brief discussion

relating to some experimental results for NHNO3 will be

presented in a later section.

There are experimental situations other than a direct

determination of K, however, which may enable one to say

something about the applicability of f(T) to the explanation

of experimental results. Reaction rate constant appears

in the general conservation of heat equation

C/72 =AI + Qrff
- t

where C is the specific heat, 00is the density, R is the

thermal conductivity, Q the heat of reaction per mole,

n the number of moles per unit volume, and I the

calculated reaction rate constant. To reduce the



oijp•j.-.. f .- ,,- equa.,o, . nd . . n to define a simple

experimental arrangement, one may investigate solutions

for either an adiabatic arrangement or for a steady state

condition.

The stationary state is defined by

A = QnR

Explosion takes place when this equation is not satisfied,

that is, when a stationary state cannot exist. Frank-

Kamenetski [Acta Phys. Chem. URSS 1-0, 365 (1939)]

considered this tyjpe of problem2 with

A exp(-E/kT)

where A is a temperature independent factor. We shall

investigate the effect of the temperature dependence of

A as given by the three models.,

A very simple experimental arrangement, which in

principal should be subject to exact mathematical descrip-

tion,, is one in which a pample of the explosive is placed

in a temperature controlled bath or environment. Both the

explosive and the bath start out at the same temperature.

Because of internal reactions, however, the explosive will

generate heat internally and its temperature will rise.

One may then adjust the temperature of the surrounding bath

so that its temperature rises simultaneously. In this way

no heat is lost from the explosive. That is, the term

Z17 OT is equal to 0 and the reaction takes place under
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adiabatic conditiono The heat flow equation to be

solved then is simply

V =t

In this case the equation can be integrated and the

temperature of the explosive determined as a function of

time up to detonation. The f(T) term in K will yield

somewhat different results depending on the form of f(T)°

One may then atteopt to compare these theoretical results

with experimental curves to determine the importance of

ftT)o

At the time of this writing we have not been able

to find experimental data for this type of adiabatic

experiment. However, some theoretical curves have been

calculated and the results will be presented in the

next section.



Sq•ah Sh~ C 'VD h 00 '$,

In the Fr ankoKamenetsk_. theory explosion takes

place for those values of r and T for which the following

equation is satisfied*

R= a g(Ti' oEikT

where E a'Rzl/2

is a constant -which depends on the geometrical shape of

the explosiveo r is the linear dimension of it, N is the

number of reacting nolecules per unit volume, Q Is the

heat of rcn.t1.on and A is the thermal conductivity, In

the Frank-Kamenetski case:

g(T)A = ATo
kTP -

In our Case I:

g(T) = _-3/L To

]In our Case 2*.

gl(T)= 33rT 0 ( L.,e" e/T) T13/2

In our Case 3:

g(T ) = ....

Oq(le-eO/T)T

The difference among these four cases appears

when the explosive material becomes very small, We
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notice that in the Frank-Kamenellski case there exists an

absolute critical radius such that below that radius

explosion can never take place even at high temperature.

The critical radius is obtained by solving for rmin in

the Frank-Kaynenetski relationship

T 2: e.IT 0/TTP

where T~ a. 92AI0 k 2k

which can be written as

for the critical, radius,

Thus for Frank-Kamenetski case, the absolute critical

radiua is

re E

where e is the exponential, and th6 csrr.sponding

temperature is

T c - To/2

As (,an be seen from the general expression for r2,

an appreciable change of the critical radius r appears

when T becomes comparable to To. By looking at a curve

we can say that such change of r with T occurs at about



T ý-, Tc//2 . If we take thls e, rItcrion we see from the

formula for r l that the critical radius at such tempera-

ture Is about 1. lr., which means if the change of

explosion temperature Is observable, the absolute erltloal

temperature is also observable.

In our cases one can obtain the absolute critical

radius in the same way, and one may verify that they

occur at

T(, 2(To+e) for Case I

T 3To+8) for Case 2Tc

TT 0 To+6 for Case °

Since Lhe T. peiJi:ec• of the critical radius il

determined primarily by the exponential function e T°/T

the abov, crteorion T = T./22.,5 in order to have an

appreciable change of r with temperature may be applied

in al) of the above cases also, Thus the radius at which

the e•:plosion temperature ehanges are approximately

1o9 r, for Case 1

) .,1 for Case 2

1.4 r for Case 3

Experimental resultsi show a change of explosion

temperature with the dimension of explosive, H.ver, there

is no definite result for the absolute critical radius.

Thus our Case I is favorable over other cases including the

original FrankoKamenetski case.

1. F, P. Bowden and A. C. McLaren, cited in P, 30 of,
Bowden and Yoffe~s "Fast Reactions in Solids",' 1958.
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The Adiabatic Heat Balance Equation is

dt

where C heat capacity/mole

Q heat of decomposition/mole

For the three functionssj(x), considered in Section I,

Swill be of the forrm

R =Af(T)e-T/

where (T) Tn

G.e-/T

and A involves the constants which vary ilth the particular

model. For the present we shall regard A as determined

from experimental data for a particular substance.

That is, no attempt will be made to evaluate A from more

fundamental properties of the solid.

The heat balance equation becomes

f:e---dT S t

f(T) 
tI

Since f(T) is a slowly varying function compared

with /T, we shall, at present, carry out the integration

in T by treating f(T) as constant. Thus one obtains

_____I _ 1T
C f ( T ,) T O ( T) T



Tims, rnr each of the three casges one obtains the

results:

Case I

Case 2

QA 5T0c LT/2(.e-1/12:e8o/T) T3/2(_e-G/T )e TO/T]

A2 '~o

Case 3

tt 1 ~ ~ ~ ) L T ( 1jTeoT

When the A!rvhenius equation, Ae is used

for 'K, the result is

t:- c c.Te TO/Tj - eTO]

When the Eyring form, X A 9Te-TO/T is used, one

obtains

-- 3 c 0 l ~T 3 /T1
A ~QT0 ITJ
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The following calculation is an exploratory 6ne

to determine the nature of the temperature versus time

curve for the adiabatic decomposition of a typical

explosive. In the calculation it is assumed that an.

initial reaction rate const.•t is known 2 It will be

assumed that the reaction rate constant is a function

only of the temperature and not of the time. One may

arbitrarily take the Arrhenius value of A for EDNA which

according to Cook 2 is 101 . We will assume that this

value of A Is determined from the experimental isothermal

reaction "ait-, ta.onstant at n tnmporrture of ,j27°0 K. Thei

constant in ou, easel, which we will call A) is then

given by -e/T?)/T-3/2
A" =A(I-.e/)T

where TV is the temperature at .yhich A is determined,

in this case L,27 0K0 One may then assume an adiabatic

reaction starting from some arbitrary initial temperature,

say 373 0 K, and cw ry the calculation to 433°K. Results

of such a calculation are shown in Figure 8 for two

arbitrarily selected values of the Einstein temperature

O 200 0 K, 0 = 800 0 K.

One may note that there is a 20-30 percent difference

In the predicted time from reaction initiation to

2,.- "-sothermal Decomposition of Explosives" by M. A.
Cook and M. Taylor Abegg, Industrial and Engineering
Chemistry, 8, p. 1090, June T917.
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detonant;on uning the Arrhenius reaction rate constant and

using ouf Case 1 reaction rate constant. The adoption

of a reaction rate constant determined from an isothermal

experiment to describe the adiabatic reaction may be

open to question but the curves do give one a qualitative

indication as to how the temperature time predictions will

behave for the various forms of the reaction rate constant.

Using the experimental data for log K(T) obtained

by Cook (see Refý 2) for NE4N03 an attempt was made to

determine whetheor our Case 1 would fit the K(T) curve more

accurately than the simple Arrhenius reaction rate constant.

It was found that no measureable improvement was obtained

by introducing the factor T3/2(l-e09/T). Since the data

used in the calculation were taken directly from the

graphs of Refo ý, it is possible this calculation may

be improved by referring to the original data.

Conclusions and Recommendations

The reaction rate theory developed in this chapter

predicts a higher function of the temperature in addition

to the usual Arrhenius factor in describing solid state

reaction rate constants. Predictions of the theory

therefore differ from those made on the basis of the

Arrhenius or Eyring theory.

It is recommended that further work be carried out

in order to develop improved models for the function 3(x)

defined in the text. Further applications also should be

made to reaction dependent Dhenomenao
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Chapter III

PRELIMINARY CALCULATIONS RELATING TO
EXPLOSION INDUCED BY A FALLING BODY

M. Mizushina

A shock wave can excite the lattice vibrations.

If the maximum amplitude is xo the energy of an

oscillator per atom is I-2 PM4oo Thus in. a simplified2

model which assumes that n oscillators ape exuited by

the same amount gives the total energy as

W = 2n P-•'o
2' o

The number n must be proportional to the duration time

of the excitation divided by the velocity of the sound wave

in the explosive, Suppose such shook wave is excited by

a body which changes its momentum from p to zero during

time At we have

A

j j27 - P = 2 Nkx 1INMwo~x

MA t 2 0 2 0

T 2= 2 M1

if CoAt /< 1

If At is much larger than 1/w,, we have

t r NM~oxo if wAt ;>-,-I

as discussed in the appendix.
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One nay defino a sh fraction of momentum which

is used to excite the shock wave in the explosive crystal.

If the collision is perfectly elastic

a= 0..

If it is completely inelastic

where m, and m,? are masses of hitting body and body hitted,

respectively., In our case v must be very small since the

collision is nearly elastic.

The lattice wave propagateawith the velocity of sound

u. The number of excited oscillatorn, is thus

n = NAuAt

where N is the number of oscillators in the unit volume

and A is the area -hich is hit by the external body.

From the preceding equations, we have

At = (GP/2NAuNW'x,){

D = (aPNAu/2MwPxo))

if At <<«/1 , and

At = 0P/1NAT. kuyx

n = aP/M xo

if At ??1/•
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For example, if the hitting body has the same

density as the explosive and its velocity is v

aP/2NAuMxo - a o( v/u) (A/2x0 )

where ,is the thickness of the hitting body. If v Is

100 cr/sec, '' is 1 cm, the above ratio is about 104

since u is about 105 cm/sec3 xo is about l0-7 cm. Thus

if a ý'10-4 we have a cAt ;1 case, but if a it

is a toAt<<1 case.

If we drop a mass m frorr the height h the momentum

p is p m(2gh)-

thus n = (mGNiAu/2Mxo) i(2gh)1/4

if wAt <<I, and

n = (m /Mixo)(2gh)f

if bAt >>I.

Now the energy of this hittitig body is mgh, so that

W = 13mgh

where P gives the fraction of the energy absorbed by the

shock wave. It Is expected that P is about 0.5. Using

the above equations, one can obtain

where (2_/ 2/3( 2)1/3 gj
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if cwAt <'l, If, on theother hand wLt»1,

Y ( &"°•)g2)'

if CoAt >; 1.

We see easily that

At = 2"?/12( m/jMNTAutB)1/3 If Ot 40

At = 2oPm/MNAui±"' if )At >I

Suppose h is 10 cm, we have v - 100 cm/sec which gives

the previous example, Since w iz about i0 1 2 sec-1 , a

should be about 10-2o5 in order that x is 1o-7 am.

From the last equation above, we have At of about

i1010 sec. Thus we have a consistent picture Df oAt>>l

case here.

Using x0 ' YOh we obtain the reaction rate K for

three cases considered in the preceding chapter.

I F1 •--sin(h i if h >h

=0 ifh h
0

ho if h >h 0

fi

0

= if2h h
0

K• = •sif h > h°

0 if h h

Ao



_he ( _={a/') 2 .

h U

In Figure A the corresponding curves are shown,

Since the velocity of sound is independent of the

amplitude the above quantity essentially gives the

number of reactions per unit volume. Explosion will

take place if the reaction per unit volume is above

certain valuc soitnat the temperature of the explosive

can be above the explosion temperature.

The number of reactions which take place in unit

volume is 1NKAt

From our equations for At we see that At is independent

of h in any case, the height dependence of the above

number of reactions per unit volume is given by the K part,

namely, by our equations for K1 , Ke, K, for three typioal

cases, respectively.

The explosion ,.an oc ur if the temperature reaches to

the explosion temperature Te by these reactions, Assuming

that we can neglect the heat conduotion during At the condi-

tion of explosion is

' NKAt ; Toe-T

where 0 is the heat produced by each reaction, C is the

specific heat, T is the original temperature.

For a given size of the explosive the explosion

temperature T. is given as discussed in the preceding

chapter.
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The above formula gives the minimum original temperature

T necessary for explosion as a function of the height h

if we put out various expressions for K and for At into

it. The result can be seen in Figure B. These three

cases can be easily distinguished from each other in

this case. Such experiment will thus be a good test to

see which assumption is correct.

Conclusions and Recommendations

The reaction rate theory developed in this text

may be applied to the description of explosion initiation

by a falling body.

A preliminary and simplified treatment given herein

should be amplified so as to include further detail.
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Reactio4
Rate

K3

hoh

Figure A. Reaction rate es a function
of height for cases 1, 2, 3.

To

2

t3
T

0

Figure B. Minimum original temperature
necessary for explosion as a
function of height. Curves 1,
2, 3 correspond to our cases
1, 3, and 3, respectively,
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Appendix

CALCULATION OF THE FORCE DUE TO SHOCK WAVE

We suppose a linear chain made by single kind of

atoms combined together with force constant =12, If we

hit one end of this chain the vibration of this atomic

system, which is nothing but a longitudinal sound wave

or lattice wave, will be excited at that end. The wave

will propagate with the sound velocity u and the inter-

atomic distance r at distance y measured from the end

will experience a displacement x from its equilibrium

value re as

X = x cos CO(Z- t)
lq A ai-ý A.,d

If the exottation mechanism 0

is such that it keeps pro-

ducing such lattice wave at
Figure 1, Linear chain.

the end in the same way

throughout a period At, we will have a region from the

end surface to depth y = ut in which all atoms are

excited and interatomic distances given by the above

formula, but beyond that region no excitation.

x x 0 cos (0 - t) for y 1 ut

x 0 for y > ut
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The total displacement, namely the change of the

length of this chain, at time t smaller than At will

be given by integrating the following expression. Using

notation N for the number of atoms in unit volume and

n for the total number of excited atoms after the time

interval At, we obtain the following result, since

n = NAuAt

The total displacement at t in

x = NA dy d NA x,, (Lt - t)dy

sin wt

The total force due to the displacement is

sin wtnM~xo ,

The above total displacement x can be both positive and

negative. If the impact is so strong that the surface cannot

be pushed back, the negative value of x cannot exist. We

assume that each time x tries to be negative a new wave is

generated at the surface so that x always stays positive.

One such wave is

x = nx, Isinwt0

for example. In this case we have

F= nMcav-xL(sin COt

7 1. '



The average total force over the duration time At is

At

If OAt <<1 we have for both cases, .that is for

P6-'sin (at and F" Isin OtI

.FAV 2 "o

while if cAt, I we have

<F>AV = nMwxo i-cos WAt _nMcaxo

<FAV fl4AX 0 (wzAt)12  (

for the sin ot case and

> A nMPx. nM 0x.
7V - It cAt

in the case of I sin WtI,

If we take F for the sir. wt case, we obtain

P = NAuMx°

which means x. is about 10-4 cm under ordinary experimental

setup. Obviously x. must be about lO-' 7 cm in our picture.

Therefore, we do not take (0• corresponding to F* in wt

in this artiale but take KF> corresponding to F- sin wt

instead.
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Chaoter II

THEORY OF DIELECTRIC CONSTANT AND
LOSS TANGENT FOR A MEDIUM CONTAINING IMPURITIES

Donald G. Burkhard

In the final report for Contract DA-44-009-ENG-3628, 1959

we reviewed vaxious atomic and molecular mechanisms which

give rise to a frequency dependent dielectric constant

and loss tangent.

In the same report we calculated the frequency

dependent dielectric constant and loss tangent for a

medium containing impurity centers. The principal

motivation for investigating this situation lies in the

fact that newly formed "pure" lead azide decomposes with

time. Therefore, if dielectric and loss tangent measure-

ments are made on a specimen at different times, one is

not necessarily dealipg with a pure homogeneous specimen,

When attempting to interpret microwave measurements, it

is therefore of importance to know what type of frequency

dependent behavior to expect as a result of the presence

of impurities. The measured spectrum will, in addition

to the impurity effect, have superimposed on it the

characteristics of the molecular polarization associated

with the pure medium and with the impurity centers.

These effects may be incorporated into our general

formulas for particular cases0

As we shall see in the next section, the exact

calculation of the dielectric properties of an impure

medium is analytically rather complicated. One may
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substantially simplify the calculation, . . by uing

Lorentz's procedure for calculating the dielectric prop-

erties of a medium containing polarizable atoms and/or

molecules. The procedure, as is well known, is to remove

an imaginary sphere from the medium. The field at the

center of the sphere and associated with the matter outside

of the sphere is then computed by calculating the field

associated with the polarization of the sphere. To

obtain the total effective field at the center of the

sphere one then replaces the matter in the sphere and

calculates the local field associated with the individual

charges of the matter in the sphere. Knowing the total

effective field at an atom site, one may then express

the atomic polarizability in terms of the external field

and finally obtain an expression for the complex dielectric

constant of the medium.

In a similar manner, the Lorentz sphere procedure

was used to calculate the effective dielectric properties

of a medium containing a cubical array of impurity

centers. A requirement for accuracy of the calculation,

however, is that the separation of impurity spheres be

appreciably greater than their diameters. It is not

clear just what the limits of accuracy or this model are.

It was therefore considered desirable to attempt to solve

the problem exactly by solving Laplace's equation for a
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homogeneous medium containing a cubic array of dielectric

sphereos It was found, after developing the above des-

cribed Lorentz-type treatment that Rayleigh had calculated

the effective conductivity of a medium containing a cubic

array of conducting spheres. In this report we generalize

Rayleighvs results in order to calculate the complex

dielectric behavior of such a medium. The more exact

but also more complicated results obtained by using

Rayleigh2s procedure are then compared with ours in order

to determine the range of applicability of the latter.

That is, we compare with the more accurate treatment in

order to determine the maximumn ratio of diameter of

impurity to separation of impurity in order for our

simplified procedure to yield accurate results.

We now summarize the procedure for calculating the

complex dielectric constant for a homogeneous medium

containing a cubic array of dielectric impurities, This

will be done first by following Lorentzos procedure

and will then be carried out by generalizing Rayleigh~s

method, In a later section, the effective dielectric

constant and loss tangent for a compound medium will be

shown graphically as a function of frequency for various

percentages of "impurity" constant and for various values

of the dielectric constant and loss tangent for the

medium and for the impurities.
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Lorertz Prooedure

Allow the supporting medium to play the role of

free npace. That is, the supporting medium will be

described by the dielectric constant

On -- oo E 0

'o 0 0 0 0 )P
0

We now treat the imbedded spheres as ;"atoms" in

the supporting mediunm

The Lorentz sphere is shown dotted in Figure 1. If

the imbedded spheres form a cubic or random array of

dipoles parallel to the field then the internal field

of the spheres produces no effeoto In this picture

we now want to correlate e and r for the composite
e e

medium with 1;he macroscopic properties of the spheres

and tbe supporting medium. The atomic polarization

effects unually put into tho Clausius-Mosotti equation

now are those. associated with the imbedded spheres,. The

thpee basic equations which lead to the Clausius-Mosotti

equation are now

o eoa
P = o o Ee

P n eý*RE
0 0 eff

E eff= E +

0

7iZ)



eff,4

PI~ue I Imbedded spheres K"1K , )in
dielectrilc X*(K'Jj4y Dgtted



b( :-ne Yu & u vre[ rriu2 is then

tbn'i oy, a med jum consistIng, of the imbedded dielectric

sphey~os In QLe "space" of the suppoirtilig medium. a is

the polpxizni5i~ty of the indflviduai spheres in the

sppc,-tirg -riedlumn The above equations yield the

Cla-E'u-.j-u"Yo. sotti -eesuit

ncy
I-n ej/3

0

Thus + (

0 0 0 0 1- /3

or

0 l+2/3r moo

0 1n~ou/3

To caou.1wa, (1, onol nmujt ai,,.culatt, the dipole mo~ient

as5qocla4tad v-ith one of: the lynledded sphei~es. This is
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'OOM; lb) sOl';.U11 C0i onI p qI out.i-J do rjf a

conu~t.Tn ~ I.re l an :i:'I mIto conduicting dielectric

~~P E

Pivst term cont~rA-buts a tx1which, is the smiie

as tbat of t. dipole

wltier e

0 -) ())ow

S 0

0, 0

whore K, and K0 aro t~he dm:{rtruoontants for the

sphere and ilne rowdiuc, rrr pciey. Is a constanlt,

)0 1 , J1n ITS ;tný:. C' Is ý r3 vloui ty of light in

fl'6E! ,PnC( iz ne be r!' per ~cod

SChaptt.rz "Theory~ of- the 'ý -eeontric Cornstant" by D, G,,
13urkhard I1n Final Rnpor,; , Contrapat Dh-44~-0O9-ENG-3628,
Jully 3959ý
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Cop .3pheor and mdv.TlYo cce-fflfU'-nt of E Is then the

polarizability "u(' ci our iniaer-osopi c s~pheres.

1 2 E P

0 8

Putvl~ov fori tnd cxpr stin:g fr~ad h

0

K03K -,2 'B) K 0

0 ) _

wexb, the fotlowhi expresg:ionsaeotld for thei~eC~uiu-

diaot;Itric constnt Kn an hodatvt



of hC) (' omp Ire d iirodin

3 9

9

Ln lAv~abc-vu oquat2.on-i one nov) bas Kt, andi 8 exp-ressed

In te~rms of F< o Y Q-. K.. 1 "B

j~a jae Y~hprcedtur(-

Follow".ng is a georicaiIzation of Raylelgh'ýs procedurev-

..n pr:itciple, there, Is no rostr'iction on the size of the

Jinpurli.y spheres, Thcm results, howevers, are expressed

in terms of' a series oparnsinn so that one must be careful

to carry a sufficlent number of terms for adequate

:.Philiosophlce.1 Ma1gazine;, Vol. 33-~34~ (15692) pp. 4152
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Consider the medium as divided into an array of

rectangular units of dimensions e, 0, and Y in the x, y,

and z directions, respectively. See Figure

00 0

o A-c,- 
V'

41Z P

//

FT?~re

If one takes the center of one of the cylinders P as

origin of polar coordinates, the potential external to the
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cylinder may be expanded in the series

outside V = AO + (A~r + Blr'2)Y. + - + (Anrn + Bnr n Y ... .

inside V9  C + CY~r + °°° + C Y rn +
fnn

Y denotes the spherical surface harmonic of order n.

Boundary conditions on the surface of the sphere where

r = a areg

Vt=v V 9 VdV' dV
dn Z-n

-Y denotes the ratio of the complex dielectric constant

of the sphere to the complex dielectric constant of the

mediumo
Ks

~jS

0

To apply boundary conditions, one has

dV ~~2BI)I_.n- nl

= (A, - )y +-o + nAnrn-- I _ ) + B o
d -r3 r3+2 B2 n

dV9  CY + oo*nC Y r nrl +
dnnn

Equating coefficients of the Y's for r a

2B
Ia3

A (n+l)Bn I

na 2 n+l
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Likewise from V V'

A, + -B C
Ca3

B
A + -. :n.- = C n

a2 n+1

Frorr which

Bn a 2 n+1 An

We must now consider the limitations to be imposed

upon Yn. In general,

= Z n(H cos sp + K sin sO),
Yn n s

where

()9= is(con-'S. r- ns) jn-sKL 0 n-s2"ýn A +~~ cs'• ..

2(2n-1)

0 being supposed to be measured from the axis of x

(parallel to a) and q) fror& the plane of xz, In the

present application symmetry requires that s should be

even, and that Yn (except when n = 0) should be reversed

when (7-8) is written for 0. Hence even values of n are

to be excluded altogether. Further, no sines of sp are

87



admissible. Thus we may take

YJ = cosa, .- 4000

Ya = cos 3e - i cosO + H2 sin19 cosG cos 2T,

S5 = cOS59 - IO cos3 a + -L cose9 21

+ L2 sin8e (cos3e - . cose) cos 2V
3

+ L4 sin4e cose coo 4•p ....

In the case where Y = symmetry further requires that

H2 = 0, Le - 0

One may now apply Greenvs theorem:

UdV - VA) ds 0
dn dn

to the surface of the region between the rectangle ABOD

and the sphere P. Within this region V satisfies

Laplace~s equation, as also will U, if we take

U = x = r Cosa

The applied field is taken as parallel to AD, BC,

thus sides DC and AB are equipotential. Over the sides



d U dV
BC, AD, rn9 ai both vanish. On CD, d-I represents

dn
the field strength.

E= J •

(Kr+ JOKo) jCoKe

where J is current density and

0'

Therefore C dV ds over CD, AB represents
3 dn

l eo0 I , The value of remainder of the integral

- dn ds, over the same lines is -PYV. where V, is

the fall in potential corresponding to one rectangle,

as between CD and AB.

On the spherical part of the contour over which Greengs

theorem is to be applied

U= a co8aE dU=..= _ Cosa
dn dr
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V =An + (Aja+Bia-`)Yj + (Aza3+B~a-4)yz +

2z~ _ dV- - (A,-.2B~a-'3)y1 - (3~24~-)a.

Substituting these expressions into Green's theorem~

yields

dV dnd (VdU

jr-f (U. I V7n) ds S f d

X(a 2 sinO dG dT) A+AaBa)Y.(,aB3-4y+.I

X(-cose)(a2 sinEG dO dcp)

Inserting the appropriate expansions focr Y1, Ya,, gives

jug-v - vEDUds = a3(Ai.-2Bia-3)' (cosO) sing cosO dO dpdn dn f-J

-a3(3A8aOtB~a-5)J (co838 - ~. cose+H~sin 2ecoseOos2q,)

Xsine cos9 de dTp *~ + a~aA. J sing cose dO dcp

000

)(Inin cos9 dO dTp +
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Simplifying,

(- - V.4)ds = (l32,I-3~54~-)I- 11+H212Sdn dn 5

- coo +a2A0I0+(Aja 3+B1 )11 +(Aza5+B~a-2)(I.- 3 11+11212)+~

where
1 0 = sinG cos9 dG do 0

I, = (cosO) sinO cosO dG dq, (2n

Ia =J4JV (sin'G cosO cos2cp) sinO cosO dO dp 0

13= 55'(OOS3e) sinO cosO dO 6p _t.(,A 1
etc,

Thus

(UV V'9-U) ds - HCAj&12Bj)-(~ 3~S1.~8"$ dn dn 3 A (3Aa54a

*QV~+(A2.a3+Bj)I¶+(1471 - 3 LV)3A~a5-14B~a-)+

35 5 3
- LitB3

Although only terios up to Ym were used aborve, It is seen

that integrals of the type J (0osO)yn(sine dO dv) will.

vanish for n= 3,5,7,..... due to the particular
num~erical coefficients on powers of cosO In Yn and

also to termis which contain cos kTp, k 2= ,-o

since fcos kqp dp 0, k =2,4,,6----

9:1



Thue from Greenws theorem one has finally,

_______ ~ + 4Ti=0

The potential V at any point may be regarded as due

to external sources at infinity (by which the flow is

caused) and to multiple sources situated on the axes of

the cylinders. The first part may be denoted by-5xo

In considering the second it will conduce to clearness

if we imagine the (infinite) region occupied by the

cylinders to have a rectangular boundary parallel to

a and P. Even then the manner in which the infinite

system of sources is to be taken into account will depend

upon the shape of the rectangle. The simplest case,

which suffices for our purpose, is when we suppose the

rectangular boundary to be extended Infinitely more

parallel to a than to •. It is then evident that the

periodic difference V1 may be reckoned as due entirely

to-Ex, and equated to-Ec. For the difference due to the

sources upon the axes will be equivalent to the addition

of one extra column at + x, and the removal of one at

- c , and in the case supposed such a transference is

imnaterial. Thus

* It would be otherwise if the infinite rectangle were

supposed to be of another shape, e.g. to be square.
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Placing V, = Ec in the above result obtained by use of

Greengs theorem, one obtainls

- - - ] ,IoK

n ~ 0 00

E is the anplied field so that is just the complex
E

dielectric constant of the medium° For i = 0 it is

just the specific conductivity in 4 dir-ection parallel

to c of the compound medium. It now remains to connect

E with B1 .

Following Rayleigh we now calculate B).?E approxiimately,

limiting the treatment, for the sake of simplicity to

the case of cubic order, that is where o Y.

One may now obtain a relationship between B, and E

by equating two forms of the potential for a point x, y

near P in appropriate limiting cases. For example, the

potential at P due to multiple sources Q and source

-Ex at infinity is

V = 7,- 2- (Anr'n + B r'nl')Yn - Ex,
5,?.fn nn n

Here the r2 and the arguments of the spher ical harmonics

are referred to coordinate system located at each Q.

5, ',5 denote the origin of the QBso If the Q sources

are allowed to recede to a great distance only the terms

in B will contribute. The above expression does not include
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the effect of P itself. On the other hand, if the

sphere F is excluded (if its radius goes to zero) the

potential at xy is given by our original expression

with the terms in B absent. Thus another form for the

potential is

Ao + AjrY1 + Azr 3 V, +

Equating the two forms, one has

Ao + A3x + A5(x 3  
. xr2) +5

B+ B Z 3 XrV +
r` r

in which

where /, , 5 are the coordinates of Q referred to P,

Hence by differentiating the left. side once with respect

to x then setting x = y = z = 0, A, - R is obtained and

is equated to the corresponding expression on the right

side. In similar fashion, differentiating the left side

thrice with respect to x then setting x = y =z - 0 yields

3!.A, which is equated to the corresponding expression

on the right. Thu

A, - H d (BIZ -- + Ba ..... +.-i Ir9V-
rq3 r v7

911"



dd
At the origin, x y z = 0 so that • - - and

d /V3 4x r'
A 1 -l~~, -dj- (r ~3) + i r9)7 .

Since x• = , y = - ? z -3" at the origin, so

also is r -ý +• + and thus

77~ ~ rdý(3 -lot

If we letf/ , then

22 ý -. (3 4
rr /03 2, 3 14 3•. 2_.

where P2 i/) is the second order Legendre polynomial:, Also

l4

3 51- 302+ 3 - _ _

8P4OP,)
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where P 4(A) is the forth order Legendre polynomial.

Hence

In similar fashion'

3x•'Am d + Br? 1 -+ xLx r13 rZ7

Again at the origin, 3-- d so that

3d 23 3•

d--8 ("q P

wh ile_. _
,x 3 \r / d /dyl /O / 9 d

d32

.ý.L- [ -, 7o%ý,3-' + 63X,4-111

-- 3/-7 (231- 31I5 1 0.i5[f6 L• f

/06
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}le nqee

A similar procedure will give A5 , A7 , etc' Each of

the above summations is over all the other spheres Q,

i.e., over all coordinates T, -, ,74 of the form.A,

me, nu where 1, m, n are positive and negative integers

except 0, 0, 0. Let these sums be denoted by Sep Se ,

etco so that

Since A -B1; n n due to the boundarySic n nk a• an+1

conditions, we have the following-

Aa=B5 (12+~1+/) 4BA.S) -8B,,(c" 7s)
(1-V)a74

and thus

A, - H 3=, (B2, . H) -2B.,'S2) 8 e-5s

or

H - B /2+ý)I+ 2Bju'3S+ 8 i-s 4:Lr5 j-'.a7

if we neglect the last term in the A8 expansion.



Therefore

Ha3  2+. 2 (a\10 R12 2 +

Finally, the specific conductivity is

O1 3/Ha, (where v-PY for simplicity)

Y1aa3/rh3

It remains to calculate the sums S For the first
n

sum 82 , we have

It has been assumed that the extension of the medium

is infinitely more parallel to the e direction than

either P or Y so the space to be summed over is a

rectangle bounded by)'= + W +zv, -= +v where v

will ultimately increase without limit.

Consider first the space bounded by' t-v,

a cube centered on the origin. Since the spheres Q

are cubically symmetric, Z L Z I so thatp5 P5 p5

S8 - 2 • 5 0 over this space.

,,- -



Consider next the space bounded by • +

t• cx 11 t Tv• We assume that In this space,

(is sufficiently large so that the summation can be

replaced by an integral. Hence

S 2 d -I f , I

"V -V

where ris integrated fCiom -. c to -v and +v to +m c

Hence -S2 will be obtalned by Integrating from +v to +m.
2

V -v

-~ ivj SwV7"-V-V "V --

* l/2 (V 2+tan?-)3 2' 2 + , V + I 2

2v2d

•-~~ s'--e..•- o that the above Integral becomes
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Let x 2 sine, then dx coseO dO, tan-G

_E. n R e-ý4 X .X. and we have

S dx 2 (in- 1 2F2;- x
Va.

Finally if we let p . and neglect the term

10
containing 00) as a first approximation to the

specific conductivity, we obtain

1 4itB1  3p ____

+ 2,2

In order to carry on the approximation we must

calculate S•, etc. An approximate value of S4 may

be calculated by direct summation from the formula

We may limit ourselves to the consideration of positive

and zero values of , . Every term for which

•, 7, •, are finite isrepeated in each octant, that is

8 times. If ono of the three cooidinates vanish, the

repetition is fourfold, add if two vanish, twofold.
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The following table contains the result for all

points which lie within4 -- 18. This repetition in the

case, for example, of 01 = 9 represents two kinds of

composition. In the first

p Is 21 + 22 + 1s - 9•

and in the second

j= 34 + 02 + 0+ = 9.

The success of the approximation is favored by the fact

that P vanishes when integrated over the complete

sphere, so that the sum required is only a kind of

residue depending upon the discontinuity of the

summation.

The result is

8 4 3 ol . ..... .

J . .... I . . . . l

oo,1 1 +3 5000 o 0,0,3 9 + o0 4

0,1,1 2 - .3094 0,1,3 10 +.0243

1,1, 3 - .1996 1,1,3 Ii +,0075

0,0,2 4 + .l094 2,2,2 12 -. 0062

1, P 5 + .D501 0,2,3 13 -. 0015

1 1,1,2 6 - .0397 1,2,3 4l -. 0095

0,2,2 8 - .0097 0,0,4 16 +.0034

1,2,2 9 - .0277 2,2,3 17 -. 0061

.__ _ _17 +.0085
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As indicated earlier the proceding several pages for

evaluating E/B 1 follow Rayleigh. Details have been added.

Referring to our formula for complex dielectric

constant (taking n Y)

e o3 E/B 3,

One may now insert in the above the following expresslon

for E/B 1

1 +, + _41 a* (3 10

T a 3  3 ao3 10 .

We now wish to Compare the above expression for K

with our form for K, that is with the Lorentz method

for obtaining Ke. In the latter case we have (in c g s)

units

+ 4-nn.0P l+4Ano e v 213

l-4,xneaý/ 3 l-4hneU'/3

In thlis case a" is the polarizability of an impurity

sphere.

First note that if 4hAn o u /3 is much less than unity

one can write the above

K* "9 1 + 4gn C'e o
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Also note that this is the form one would obtain

for K* if it is assumed that the local field is equal

to the external field.* That is, it is the form of e

when one neglects the effect of the spheres on each

other.

1 0 S a3

1 + 2eýo*Ir
0 S

Putting this In our approximate expression for I&, one
e

has

0. a

If one approximates E/B 1 by

E I +1

a3

Also P no.Ceff = n dE

if local field Eeff is equal to applied field E.

Therefore

and
K 1 + += 1 + no
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In the Rayleigh general result

[e= 1 - -~
e o3E/B;. 0

one has

+ LIT~/ _a,

1 no number of spheres per unit volure. Thus

u3

employing the first term only in the Rayleigh expansion

is equivalent to .theLorentz treatment when the local

eleotxic field is equal to tho oxtE.rnal applied field.

Since this is not true in our case, the Rayleigh result

using only the first term in the E/B. expansion results

in a poor approximation.

Now examine the effect of including the second term

in E/Bj° The first term is simply the reciprocal of the

polarizability, C , of a single impurity sphere, Thus

EtB = [1 - 1V + 411o,
C0 3

Putting this in the Rayleigh expression for K*

1 _.1 + tit-
ee

4-R- + ------

0 3 3

1[4



This is our general result using the Lorentz procedure.

Thus one can say that the Inclusion of the first two

terms in the expansion for E/Bj in the Rayleigh method

is equivalent to the Lorentz procedure. The third term

in Rayleigh~s procedure will represent the improvement

to be gained from the more exact procedure, In view

of the above results, it is now convenient to write

E/Bj as follows

E/B, + 2 CY a4(3______11___2
9 3 lO32eo/s

L nlO /3
0 s

stands for the third Qrder correction terms.

Then the Rayleigh K* may be writtene

4%no + 4tnuov
e- + (- c) 3 (1 - c)

Thus tha Rayleigh treatment is equivalent to writing for

the effective field (in cgs)

Eeff = Eo + YP
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where l0z(l - c)

3

rather than simply Y 4=c.
3

Since there is no advantage in displaying the

polarizability ao in c, we write c as follows for

computational purposes.

0 a10 a-

alO _ aa30/ 10/3 B10/3
010 0313 

3

=nov
where B = noa 3  v is the volume of a single

impurity sphere and no, as before, the number of such

spheres per unit volume.

6.190 B7/3= 2.188 ( nov)7/3

From this result it is clear that the accuracy of the

Lorentz-type treatment depends not only on the fractional

volume occupied by impurity spheres but it also depends
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on the ratio of the medium to impurity dielectric

properties as was to be expected.

We examine c for the limiting cases of a pure

dielectric impurity (0-= 0) and for a pure conducting

impurity.

Dielectric case

C=61.90[-IKok B?3 2J88I 1-K 0. IK (nov) 77
)7/3+4K/3K

Conducting spheres

619 1 r /- B 73 2.188FI-a'1 ( I v) 7/3

1+4To/3crs+ IP"/r A:'

Intermediate cases must be examined by equating

real and imaginary parts of our general expression for

Ke. Results will also be frequency dependent.
Expressions for Ke and V- must then be compared with

e e

those obtained from the Lorentz-type treatment.

We shall use the criterion that o must be less

than Ool. Figures 3 and 4 show Ko/Ks as a function of

the fractional volume nov for e - -0.1 and c = +0.1

respectively. Note that a large variation of K./Ks

(2 to greater than 10) is permitted when the impurity

content is as great as 2/5 of the volume of the sample.

Sim~ilarly, when Ka/Ks is less than 0.4.fractional volume
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Figur'e 3. Kd+ as a function of fractional volume
nov 'orc = -0.1.
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of the allowable impurity may range as high as 20 to 40
percent for the Lorentz model to remain valid. Thus one

can conclude that for reasonable ratios of the dielectric

properties of the sustaining medium to the impurity

medium, the Lorentz model may be applied with considerable

accuracy even though the fractional volume of impurity

becomes rather largo, that is,-of the order of 20 to 40

percent.

Conclusions and Recommendations

The dielectric properties of a medium are sensitive

in the microwave region to the impurity content. If

time and interest permits, it would be worthwhile to

develop the type of model described in this chapter so

as to include radiative effects which will occur at the

very high frequencies. In the event that further determin-

ations are made of the dielectric constant and loss tangent

of lead azide in the microwave region, one should look for

the characteristic behavior displayed by the curves in

this chapter in order to determine whether impurity

effects may be significant.

110



I1ED>OV~ UL~ ft f. C(21FN: ~2I Y; V T D~ ~Cý T_ 1: V !~ :

01).fj 1410r a, i§ ~'rr d~ o1. o ct v c no di. L-im, ho rea.Vto X d aa gla ~uto d

as tho supportb mnzdi ian and 1er:ol--d by a 8ubscvlpt 0 whlioh

con-W,, a cubical. or Pandom tký,vay of A½bodd~od aphori oaJ parti oeleb

hex fter do8i tAI as the 1moirnouri. y mpdi urn and denoted by -the

subscri~pt V The wupr ti~~ wI I b o c h ara ct e r zCSa b y a

di electri c corkstant and. a. conduct;071AY (Y' oW.hii thie impuri~ty

uiediumr W~.11 bc chnaYrict;riJzod) b,-., dIe.Lsc-tri\ c'netsnt K, and 1)

conductivIty C , It lb dusce~rl to obtain the reauj.tant behvitor

of the combibned rnedý w. ea.,, i bý cjmu'actnri zd by sorii "offeatIve"

di electri-c constani-1, anjd q,,)jjj ofLci.v" onducti~vity 0-C

Tn ; "'apoxr "n. eý[ `0Y )I- !!" DTE1CTR( Jý ~ 'W TR D. i,

Bur~h~ard has dor'ýw'di~ uan oA Oors tho lwus~3 CJnual'us-

Mosottt oquati on. IIR suiwmrarI. o that dorivatiAon herO. Throo

basic~ oqutm¶ ,oma, of J irnae;c:tiioovry lctd ýO tb.:j clawluoi3-

?4osotti. oeault. T1.u-)y aro

15.

e N

the pol-rizoblli1ty of a ~ihrcli~cui qnd E Cý IS the l00,0.

field In tlie výO~nlty of' an IrimpLirty sphere. The E
obtained by calculpatinF the fIel)Id In a spherIcs.l cavWty due to the

polaxr1zatI~on of thfe support, medium and the field due to other

Irnpur"ýty spheres ini tfte cavity. SInco it Is asusred that the
0_1.



impurity spheres form, either a cubic or random array, th.. lat~er

fiold vanlshes.

Elitmnation of Pn , E , And yields

However, to complete the dertvatton we need to use the conventional

relattons that exist between the ordinary dielectric constant and

conductivity and the- complex d.elec-tri.c constant, namely

Ka*

(-o"
-C -J

.= =o< = o• j= •

Thus we obtai.n

/ *0 ~/,-' ~ 1+ ± 0 ,"J- j 1W 0 +_: = (1 *wo) [Z./

1E Go~ - j1,<

Now I.t remains to calculate the Cý of one of the imbedded

spheres to complete the derivation.

Assume that the volume loading is small so that the problem

of findtng t reduces approximately to the problem of

determlining CO for a single dielectric sphere In an infl.nite

medium. in this case, solution of Laplace's equation yields for
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the potential, outsl de the spher,,i

which consists of a dipole term and a uniform field term. The

dinole potential is F e 5,n r p.os
d;pok -s r

so that theo 11pole moment is thus

CLi Ee
and so

where 0- is the radius of an impurity sphere. Substituting this

value of' o4 into the Clausius-Mosotti equation yields

3 ,L4a( c; + )
30

- _ _ _ _- o., :' -.... )

t-1-
CU 6

t+ ,. - -

where exoresslons for C0  and C; , namely

00 + n

have been substituted.
1 13



This. exoroqsior can now be reduced to obtain explicit

equations for F and Ke which is the fi.nai desk.red

result. Tf we write , C• )

then = • f\/T . * <j • 3 C-)+j( -o

3 C

so that the ],aii~i•',uS.-MoSOtti equati•on becomles

o I- o•••+L•

0 - (••J '

~k 0

G(. + f+

+!

Xf subscript o2. denotes the form .X 1- 3 and subscript
S  denotes the form X- equatiothen

t+e
+oW + CO<

E0  TI* '4iRU

C-. CI



+ k_ = X IQCC 
k

.Spa' n b nd equP~ atnd repalat1 nd out~ar pare ts d~epedns e~8w

Q Lrt. Lrlz + Cj?- (1< 7- <)

andV-T

q(34B 1) + kf~

+n~~o (+2-,)cr.
\3S

4-~-' + ('t)o*Q~

+ 33L

Nower,=7O. 3 4 /
U- Q + raT)~na vT, m +cu~db ~prte

Q.- l F



To be consistent with the model, the fractional volume of

!mpurl.tles must certainly not exceed 25%. Even then, l 2-- o.0(0

so that the error introduced into 0-i- ,k 3X

and N•- 11 by neglecting relative to unity will not

exceed P 1•%. For plotttng purposes, this error is negligible.

Thus we write

K (fl

0-7 7 . a

or F

Now introduce the following rati~os:

0

Tlhen

Now< 4c and 3D6 •< 4(. to the same approximatioon

previously made, 1..e. neglect of .I compared to unity, tae

above two exoress~ one will reduce to

3(q+ 4 4 +. ER16



P.nd T _ 3B#6jzL

_ It ~/÷~1i~ei+ E~zp( I1& )

•Thlis I.s the form which will be most convenient for plotting. In

the accompanying, graphs, "%. and have been plotted for

the selected values of e = 10, 100, 1000, and 10,000 and

0 = 10, 10 3 , l0o5 107, and 109 over a range of 60 from

W0 = 1 to W = 1018 /see. The value of 6 has been taken to

be = x = xi0-1 sec2.

It can be seen that - I as &j--ce , -- J asH0  0"0

+O 2 ,-, as , and

•I 3B as C4 co- Thus the genersl shape of

all curves will be

ae.

-Ila
CA.) 0'iao10

If we return to the intermediate results, we can evaluate

the limits of k/K a and (/q- as k-s- CO which

corresponds to metallic impurities° Thus

Qj, K+~KI

h.-•
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In summary, the inbedded sphere model with sphere

concentration being small leads to a frequency dependent

effective conductivity and effective dielectric constant.

In addition, it shows that - - I and N - I are

directly proportional to the volume of the impurity con-

tained in the support medium.

Conclusions and Recommendations

The presence of impurities in a dielectric medium

affect the frequency dependents of the dielectric constant

and loss tangent. Curves showing this effect are presented

in this chapter for various values of the paramotcr.-

characterizing the sustaining medium and the dielectric

impurities.
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